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ABSTRACT: The first highly diastereoselective and enantio-
selective catalytic formal [4 + 3] cycloaddition of 1,1-
cyclobutane diester with nitrone has been developed. Sterically
hindered chiral SaBOX/Cu(II) complex promotes the reaction
efficiently with a broad substrate scope, producing a range of
multifunctionalized optically active 1,2-oxazepanes with
excellent stereocontrol (up to >99/1 dr and 97% ee).

The ring opening and formal [3 + n] cycloaddition reactions
of donor−acceptor (D−A) cyclopropanes1 (eq 1, Scheme

1) have been developed and achieved significant success on both

enantioselective catalysis2 and natural product synthesis,3

involving efficient catalyst systems. In contrast, the trans-
formations of their analogue D−A cyclobutanes which show
lower reactivity4 probably due to their puckered structures and a
slightly lower strain energy compared with that of cyclopropane
(27.5 kcal/mol vs 26.3 kcal/mol)5 are less studied. Saigo
demonstrated their pioneering study of formal [4 + 2]
cycloadditions of D−A cyclobutanes with aldehydes in 1991,6a

formal [4 + n] cycloadditions with different dipolarophiles, such
as aldehydes, ketones, imines, and nitrones, emerged and
attracted increasing attention (eq 2, Scheme 1).6 For example,
Christie and Pritchard,6c Johnson,6d Pagenkopf,6e−h and
Matsuo6i,7 have, respectively, established effective methods in
the construction of various racemic formal [4 + n] cycloadducts.
However, as far as we know, the catalytic asymmetric version of
D−A cyclobutanes involved formal [4 + n] cycloadditions has
not been reported. Recently, we developed a series of side arm
modified bisoxazolines (TOX and SaBOX),8,9 which improve
both the reactivity and stereoselectivity in the asymmetric ring
opening and formal cycloaddition of D−A cyclopropanes.2f−i

Given our interest in the strained ring asymmetric trans-
formations, herein, we uncover the first catalytic asymmetric
formal [4 + 3] cycloaddition of 1,1-cyclobutane diester with

nitrone,10 producing multifunctionalized optically active 1,2-
oxazepanes11 in high yields with excellent stereocontrol (Scheme
2).

Since (S)-Ph-DBFOX and (S)-4-Cl-tBu-PYBOX have shown
excellent performance in asymmetric annulations of D−A
cyclopropanes with nitrones2a and aldehydes,2c respectively, we
initially used these two ligands to investigate the cycloaddition of
D−A cyclobutane with nitrone. Unfortunately, neither of them
could promote this reaction.12 Then we carried out the formal [4
+ 3] cycloaddition of 1,1-cyclobutane diester 1a with nitrone 2a
in CH2Cl2 at 45 °C using 10 mol % of metal salts and 12mol % of
iPr-trisoxazoline ligand L1 as catalysts. As shown in Table 1,
although TOX/Ni(II)2b and TOX/Co(II)8g complexes was
successfully employed in the asymmetric cycloaddition of
nitrone with D−A cyclopropanes and alkylidene malonates,
poor results were obtained with the D−A cyclobutane (entries 1
and 2). After screening of various metals with several
counterions,12 Cu(ClO4)2·6H2O was found to be a suitable
metal salt, promoting the desired 1,2-oxazepane product 3a in
86% yield with 90/10 cis/trans and 82% ee (entry 3). TOX ligand
L2 was proved to be more efficient on the stereocontrol of
cycloaddition of D−A cyclopropane with nitrone, however, a
slight decrease of the ee value was observed in this reaction (entry
4). Then we turned to examine a series of SaBOX ligands L3−6
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Scheme 1. Cycloaddition of Cyclopropane and Cyclobutane Scheme 2. Asymmetric Annulation of h D−A Cyclobutane
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bearing versatile benzyl side arms, and found obvious trends to
improve the enantioselectivity. Compared with L3, L4 with two
benzyl side arms led to a better enantiocontrol despite an obvious
decrease to the yield (85% yield, 87/13 dr and 74% ee vs 39%
yield 89/11 dr and 84% ee, enries 5 vs 6). With the more bulky
3,5-di-tert-butylbenzyl side arm, L5 gave rise to great improve-
ments on both the reactivity and the enantioselectivity, affording
the product 3a in 94% yield with 90/10 dr and 90% ee within 5 h
(entry 7). Furthermore, when we continue to increase the steric
hindrance of side arm, the dr and ee values were promoted to 93/
7 dr and 91% ee (entry 8). Notably, in comparison with TOX and
SaBOX, BOX ligand L7 delivered only 57% ee (entry 9). When
PMP-substituted nitrone 2b was employed, cis-diastereomer 3b
was obtained exclusively in 93% ee (entry 10). The reaction was
carried out at −5 °C, furnishing cis-3b in 87% yield with 95% ee
(entry 11). The best enantioselectivity was afforded as 96% ee,
when the concentration of 1a was in a 0.025 M solution (entry
12). In addition, a test on the application potential of the current
catalyst system showed that this process was readily scalable even
with lower catalyst loading. With 2 mol % of catalyst, 1.41 g of
product 3b was obtained in 87% yield, >99/1 dr, and 94% ee
(entry 13).
Under optimal reaction conditions, the substrate scope was

next explored. Using D−A cyclobutane 1a, a broad range of
nitrones 2b−h derived from versatile para-substituted benzalde-
hydes, such as −F, −Cl, −Br, −CF3, −NO2 and −Me, worked
well under the current reaction system generally regardless of the
electronic nature of the aryl groups. As shown in Table 2, high
yields of single diastereomer of cis-product 3b−h were obtained

with 93−96% ee, except that p-nitrophenyl-substituted nitrone
2f gave moderate yield, probably due to the instability of nitrone
(entries 1−7). Meta-substituted and 3,4-disubstituted substrates
2i and 2j could also be used to generate functionalized 1,2-
oxazepane compounds 3i and 3j in good yields and excellent
diastereo- and enantioselectivities (>99/1 dr, 94% ee), and
decreased stereoselectivity was observed with 2-furyl-substituted
substrate 2k; 84% yield, >99/1 dr, and 96% ee was achieved by
using 2-thienyl-substituted substrate 2l (entries 10 and 11). In
addition, N-phenylnitrones 2m−o and 2a were tolerated,
furnishing the corresponding 3m−o and 3a in 84−96% yields
with up to 97/3 dr and 88−95% ee (entries 12−15).
Various D−A cyclobutanes encompassing simple and

functionalized phenyl, 2-thienyl, phenylthioxy, and alkoxy motifs
are readily accommodated, giving functionalized 1,2-oxazepanes
3p−v in good to high yields with excellent ee values (Scheme 3).
Notably, for alkoxy-substituted cyclobutanes, the diastereose-
lectivities are not good, probably due to the fact that the cis-
isomers are liable to isomerize to trans-isomers under the current
reaction conditions.12 Both the cis- and trans-isomers 3s−v could
be isolated in high yields with excellent enantioselectivity.
According to previous studies by Johnson, the cycloaddition of

aldehyde with D−A cyclopropane occurs via an aldehyde
attacking nucleophilic substitution mechanism, because of
which the electron-rich aldehydes lead to a higher reactvity.2c,d

During the examination of the reaction substrate scope, we found
that the electron-deficient nitrones apparently perform a higher
reactivity. For example, comparing p-CF3C6H4-substituted
nitrone 2e with the one substituted by p-MeC6H4 2h, the
former finished after 2 h, while the latter need 11 h to complete
the reaction. It was the same case with nitrones 2m and 2o (34 h
vs 4.5 h). The above-mentioned observation intrigued us to carry
out a series of competition experiments (Table 3). After 4.5 h, the
1a was consumed; however, we found that compared with

Table 1. Reaction Optimizationa

a1a/2a−b = 1/1 and [1a] = 0.1 M in CH2Cl2 (2 mL) under N2, 1−24
h. PMP = p-methoxyphenyl. bIsolated yield. cDetermined by 1H NMR
analysis. dDetermined by chiral HPLC. eAt −5 °C. f[1a] = 0.025 M. g2
mol % of L6/Cu(II); nitrone was added dropwise.

Table 2. Nitrone Scopea

a1/2 = 1/1 and [1a] = 0.025 M in CH2Cl2 (8 mL) under N2, 2−96 h.
bIsolated yield. cDetermined by 1H NMR analysis. dDetermined by
chiral HPLC. eThe absolute configuration of 3d was determined as
3R,7R by X-ray crystallography.

Organic Letters Letter

DOI: 10.1021/acs.orglett.5b01077
Org. Lett. 2015, 17, 2680−2683

2681



phenyl-substituted nitrone, the one with a p-CF3C6H4 group
resulted in a lower reactivity (A/B = 1.84/1, entry 1). In the case
of phenyl-substituted nitrone versus the one with a p-MeC6H4
group, the ratio of the corresponding product is 1/1.2, though
the conversion of D−A cyclobutane was only 20% after 4.5 h
(entry 2). In dramatic contrast to the poor reactivity of this trial, 2
equiv of phenyl-substituted nitrone was subjected to the control
experiment. Interestingly, full conversion of the D−A cyclo-
butane was observed in 4.5 h (entry 3) These results suggested
that the ring-opening step of cyclobutane attacked by nitrone
might be the rate-determining step in this formal [4 + 3]
annulation, indicating that the cycloaddition of nitrone with D−
A cyclobutane might occur via a nitrone attacking nucleophilic
substitution mechanism. The apparently observed lower
reactivity with electron-rich nitrone might be caused by the
poisoning effect of the nitrone toward Lewis acid.6d Further
investigation by using more electron-rich p-MeOC6H4 sub-

stituted nitrone led to almost no reaction, which was in
accordance with our hypothesis (entry 4).
In summary, although several ring-opening reactions of

cyclobutane 1,1-dicarboxylates have been reported, few asym-
metric versions have been developed. We found that SaBOX/
Cu(II) could catalyze the asymmetric formal [4 + 3] cyclo-
addition of 1,1-cyclobutane diester with nitrone with high
enantioselectivity, which represents the first example of the
enantioselective transformations of cyclobutane 1,1-dicarbox-
ylates. The mild reaction conditions, high enantoselectivity, high
yield, readily accessible catalyst, and easily scaling up make the
current method synthetically useful.
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